ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Clarence E. Lee, Joe W. Durkee
Nuclear Technology | Volume 69 | Number 2 | May 1985 | Pages 218-235
Analyse | doi.org/10.13182/NT85-A33633
Articles are hosted by Taylor and Francis Online.
An analytic solution of the one-dimensional steadystate multiregion concentration diffusion decay equation is constructed. The solution is used to determine the diffusion coefficients of metallic fission products in high-temperature gas-cooled reactor fuel particles from experimental measurement of the concentrations using Davidon’s variable metric method for chi-square minimization. Typically, for two to four material regions with 50 measured concentration data points, the diffusion coefficients and their associated uncertainties can be determined rapidly (<8 s on the AMDAHL 470/V6). Using analytical solutions, the diffusion coefficients can be determined ∼25 times faster than using finite difference solutions. The methodology is applied to Zoller’s concentration measurements of 137Cs and 90Sr.