ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
Richard W. Smith, Gary S. Was
Nuclear Technology | Volume 69 | Number 2 | May 1985 | Pages 198-209
Nuclear Fuel | doi.org/10.13182/NT85-A33631
Articles are hosted by Taylor and Francis Online.
The FCODE-BETA/SS code, based on the Electric Power Research Institute’s FCODE-BETA, is constructed to model the thermal-mechanical performance of Type 304 stainless steel clad pressurized water reactor fuel rods. Specifically, thermal expansion, thermal conductivity, irradiation creep, temperature-dependent material parameters and gap conductance for Type 304 stainless steel clad fuel rods are modeled. FCODEBETA/SS is benchmarked against end-oflife fission gas release and creep strain data from Connecticut Yankee fuel rods. Benchmarking results on key performance variables are comparable to those of FCODEBETA and COMETHE. Using FCODE-BETA/SS to compare the performance of Type 304 stainless steel and Zircaloy clad fuel over a common power history reveals that Type 304 stainless steel clad rods display higher fuel temperatures, wider gaps, and longer times to gap closure than Zircaloy clad rods. The stainless steel cladding spends only a small fraction of life in a state of tensile stress at the ridge, but the magnitudes of these ridge stresses are significantly greater than those found in Zircaloy rods. Nevertheless, the thermal performance of the two rod types is very similar.