ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yuichi Yamane, Yoshinori Miyoshi, Shouichi Watanabe, Toshihiro Yamamoto
Nuclear Technology | Volume 141 | Number 3 | March 2003 | Pages 221-232
Technical Paper | Reactor Safety | doi.org/10.13182/NT03-A3363
Articles are hosted by Taylor and Francis Online.
The third series of the critical experiments on 10% enriched uranyl nitrate solution has been performed at the Static Experiment Critical Facility (STACY) of the Japan Atomic Energy Research Institute. Water-reflected and unreflected 80-cm-diam cylindrical cores were used to obtain the systematic data of critical solution height and differential reactivity for various uranium concentrations from 190 to 240 g/l. The numerically evaluated extrapolation length of neutron flux distribution was in good agreement with the experimental result. The effective neutron multiplication factor keff for each core configuration and the effect of uncertainties on keff were also numerically evaluated with both the detailed experimental configuration of critical cores and a benchmark model provided for the validation of nuclear calculation codes. The MCNP 4B was used for the evaluation calculations with JENDL-3.2 cross-section library, and the value of the keff of the benchmark model was reproduced within the difference of 0.05% keff for the water-reflector cores and 0.17% keff for the unreflected cores.