ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Calvin C. Oliver, Edward T. Dugan
Nuclear Technology | Volume 69 | Number 2 | May 1985 | Pages 161-169
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A33627
Articles are hosted by Taylor and Francis Online.
Thermodynamic and transport property predictions for UF6-He gas mixtures are presented covering the operating range of conceptual, circulating gas core nuclear systems. The gas mixtures of interest contain 10 to 20% helium by mass, which corresponds to helium mole fractions of 0.9 and higher. For UF6 partial pressure <10 atm and temperatures in the range of 500 to 2000 K, mixture density can be determined from the ideal gas equation of state with an uncertainty of <10%. Compared to pure UF6, the thermal conductivity of the mixtures is an order of magnitude greater; specific heat is doubled while viscosity is changed very little. For identical systems, it is shown that heat transfer rates for UF6-He mixtures are five to six times greater than for pure UF6.