ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Edward T. Dugan, Nils J. Diaz, Edward E. Carroll, Jr., H. M. Forehand
Nuclear Technology | Volume 69 | Number 2 | May 1985 | Pages 134-153
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A33625
Articles are hosted by Taylor and Francis Online.
The development of a sound scientific data base that includes key information in the areas of neutronics, thermophysical properties, and materials for cyclic gaseous core reactors has been the objective of a lengthy theoretical/experimental research program at the University of Florida. The most recently completed phase of this program includes theoretical neutronics modeling and experimental verification. Static and dynamic neutronic experiments were conducted on the plasma core assembly at the Los Alamos National Laboratory to measure selected fundamental nuclear parameters in a gaseous core critical assembly in which a significant fraction (∼20%) of the fissioning took place in gaseous uranium hexafluoride (UF6) fuel; the balance of the fissions occurred in a ring of conventional solid driver fuel rods surrounding the central gaseous core region. Measured parameters included neutron multiplication factors, neutron flux spatial and spectral distributions, reactor decay constants and reactivity worths of both the gaseous UF6 and the solid driver fuel rods for various critical and subcritical configurations. Measured parameters were then compared with theoretically predicted values to determine the adequacy of various analytical neutronics schemes. Theoretical predictions obtained from the various computational schemes for key neutronic parameters were, in general, in good agreement with one another and also with experiment.