ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Douglas J. Rzepecki
Nuclear Technology | Volume 69 | Number 3 | June 1985 | Pages 279-292
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A33611
Articles are hosted by Taylor and Francis Online.
The time-dependent radiation transport for a demonstration scale liquid-metal-cooled fast breeder reactor that has undergone a severe loss of sodium coolant is calculated with both a discrete ordinates and a diffusion theory solution for the real neutron flux shape. It is found that diffusion theory underpredicts reactivity levels by about $6 when compared to discrete ordinates. It is also found that the use of an initial adjoint neutron flux throughout the transient as a reactivity weighting function could seriously underpredict reactivity levels for a severely degraded reactor core. In both cases, there was an immediate termination of the excursion. The uncertainty of being limited to two fuel fields for an end of equilibrium cycle reactor core in SIMMER-II during the transient was greater than that due to microscopic cross-section shielding factor iteration and interpolation schemes. Fifty-energy-group reactivity coefficients were best duplicated in collapsing to a ten-energy-group set with an entire reactor integrated bilinear neutron energy flux spectrum.