ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Douglas J. Rzepecki
Nuclear Technology | Volume 69 | Number 3 | June 1985 | Pages 279-292
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A33611
Articles are hosted by Taylor and Francis Online.
The time-dependent radiation transport for a demonstration scale liquid-metal-cooled fast breeder reactor that has undergone a severe loss of sodium coolant is calculated with both a discrete ordinates and a diffusion theory solution for the real neutron flux shape. It is found that diffusion theory underpredicts reactivity levels by about $6 when compared to discrete ordinates. It is also found that the use of an initial adjoint neutron flux throughout the transient as a reactivity weighting function could seriously underpredict reactivity levels for a severely degraded reactor core. In both cases, there was an immediate termination of the excursion. The uncertainty of being limited to two fuel fields for an end of equilibrium cycle reactor core in SIMMER-II during the transient was greater than that due to microscopic cross-section shielding factor iteration and interpolation schemes. Fifty-energy-group reactivity coefficients were best duplicated in collapsing to a ten-energy-group set with an entire reactor integrated bilinear neutron energy flux spectrum.