ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
H. S. Kim, S. I. Abdel-Khalik
Nuclear Technology | Volume 69 | Number 3 | June 1985 | Pages 268-278
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A33610
Articles are hosted by Taylor and Francis Online.
Natural convection heat transfer in simulated core debris beds has been examined. The debris beds are simulated using electrically heated packed tube bundles arranged in either a square or staggered lattice with porosities varying between 0.31 and 0.95. The effects of bed height, heat generation rate, particle size, porosity, overlying liquid layer height, and top surface boundary condition on the downward and upward power fractions and Nusselt numbers have been determined. Flow patterns within the bed and overlying fluid region have been visualized using particle tracing techniques. Correlations for the downward and upward Nusselt numbers, NuB and NuT, as functions of the internal Rayleigh number have been developed. In all cases, the beds are bounded from below by a cooled isothermal surface. When the overlying fluid is bounded from above by a cooled solid isothermal surface, the Nusselt numbers are given by NuB = 0.424 Ra0.226 and NuT = 1.61 Ra0.220. When the upper surface of the overlying fluid is free, the downward Nusselt number is given by NuB = 0.503 Ra0.180. These correlations are valid for the ranges 102 ≤ Ra ≤ 107 and 0.1 ≤ η ≤1.0, where η is the ratio between the heights of the overlying fluid layer and the bed.