ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
H. S. Kim, S. I. Abdel-Khalik
Nuclear Technology | Volume 69 | Number 3 | June 1985 | Pages 268-278
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A33610
Articles are hosted by Taylor and Francis Online.
Natural convection heat transfer in simulated core debris beds has been examined. The debris beds are simulated using electrically heated packed tube bundles arranged in either a square or staggered lattice with porosities varying between 0.31 and 0.95. The effects of bed height, heat generation rate, particle size, porosity, overlying liquid layer height, and top surface boundary condition on the downward and upward power fractions and Nusselt numbers have been determined. Flow patterns within the bed and overlying fluid region have been visualized using particle tracing techniques. Correlations for the downward and upward Nusselt numbers, NuB and NuT, as functions of the internal Rayleigh number have been developed. In all cases, the beds are bounded from below by a cooled isothermal surface. When the overlying fluid is bounded from above by a cooled solid isothermal surface, the Nusselt numbers are given by NuB = 0.424 Ra0.226 and NuT = 1.61 Ra0.220. When the upper surface of the overlying fluid is free, the downward Nusselt number is given by NuB = 0.503 Ra0.180. These correlations are valid for the ranges 102 ≤ Ra ≤ 107 and 0.1 ≤ η ≤1.0, where η is the ratio between the heights of the overlying fluid layer and the bed.