ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Werner Maschek, Andrei Rineiski, Michael Flad, Koji Morita, Pierre Coste
Nuclear Technology | Volume 141 | Number 2 | February 2003 | Pages 186-201
Technical Paper | Accelerators | doi.org/10.13182/NT03-A3360
Articles are hosted by Taylor and Francis Online.
So-called dedicated fuels will be utilized to obtain maximum transmutation and incineration rates of minor actinides (MAs) in accelerator-driven systems (ADSs). These fuels are characterized by a high-MA content and the lack of the classical fertile materials such as 238U or 232Th. Dedicated fuels still have to be developed; however, programs are under way for their fabrication, irradiation, and testing. In Europe, mainly the oxide route is investigated and developed. A dedicated core will contain multiple "critical" fuel masses, resulting in a certain recriticality potential under core degradation conditions. The use of dedicated fuels may also lead to strong deterioration of the safety parameters of the reactor core, such as, e.g., the void worth, Doppler or the kinetics quantities, neutron generation time, and eff. Critical reactors with this kind of fuel might encounter safety problems, especially under severe accident conditions. For ADSs, it is assumed that because of the subcriticality of the system, the poor safety features of such fuels could be coped with. Analyses reveal some safety problems for ADSs with dedicated fuels. Additional inherent and passive safety measures are proposed to achieve the required safety level. A safety strategy along the lines of a defense approach is presented where these measures can be integrated. The ultimate goal of these measures is to eliminate any mechanistic severe accident scenario and the potential for energetics.