ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
U. S. Rohatgi
Nuclear Technology | Volume 69 | Number 1 | April 1985 | Pages 100-106
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT85-A33599
Articles are hosted by Taylor and Francis Online.
The TRAC series of codes was developed to simulate pressurized water reactors (PWRs) and boiling water reactors (BWRs) under hypothetical accident conditions. The thermal hydraulics of these codes are based on a two-fluid formulation. These codes were applied to the Dartmouth College countercurrent flow tests to assess the ability of the interfacial momentum transfer models in the code to predict the countercurrent behavior. The TRAC-BD1 code, developed for the BWR analysis, qualitatively predicted the proper countercurrent flow behavior, but always overpredicted the liquid downflow. This led to the conclusion that interfacial momentum transfer in the annular regime was underestimated. The PWR version of the TRAC code, TRAC-PF1, had better agreement with the data but computed unusual behavior for the 0.152-m-i.d. pipe due to the use of Dukler’s correlation outside the data base. The code prediction improved when Bharathan-Wallis’ correlation was incorporated into this code. The correlations based on cocurrent data were not accurate in predicting countercurrent flows.