ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
U. S. Rohatgi
Nuclear Technology | Volume 69 | Number 1 | April 1985 | Pages 100-106
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT85-A33599
Articles are hosted by Taylor and Francis Online.
The TRAC series of codes was developed to simulate pressurized water reactors (PWRs) and boiling water reactors (BWRs) under hypothetical accident conditions. The thermal hydraulics of these codes are based on a two-fluid formulation. These codes were applied to the Dartmouth College countercurrent flow tests to assess the ability of the interfacial momentum transfer models in the code to predict the countercurrent behavior. The TRAC-BD1 code, developed for the BWR analysis, qualitatively predicted the proper countercurrent flow behavior, but always overpredicted the liquid downflow. This led to the conclusion that interfacial momentum transfer in the annular regime was underestimated. The PWR version of the TRAC code, TRAC-PF1, had better agreement with the data but computed unusual behavior for the 0.152-m-i.d. pipe due to the use of Dukler’s correlation outside the data base. The code prediction improved when Bharathan-Wallis’ correlation was incorporated into this code. The correlations based on cocurrent data were not accurate in predicting countercurrent flows.