ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Gary Chung, Nathan Siu, George Apostolakis
Nuclear Technology | Volume 69 | Number 1 | April 1985 | Pages 14-26
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A33591
Articles are hosted by Taylor and Francis Online.
An integral part of a probabilistic analysis of the risk from fires in nuclear power plants is the estimation of the fire severity in compartments. The computer code COMPBRN implements physical models that predict the thermal hazards, e.g., temperatures and heat fluxes, during a compartment fire, as well as the failure time of objects, such as cables, that are subjected to these hazards. The COMPBRN II code is an improved version of COMPBRN; it includes radiative and convective heat losses from fuel elements and distinguishes between damage and ignition thresholds. Comparison with experimental results shows that the modifications generally lead to improved predictions.