The optimization of in-core fuel management for a thorium-fueled Canada deuterium uranium (CANDU) nuclear reactor was investigated by minimizing the total refueling rate at equilibrium with respect to criticality and power-peaking constraints. The computer code ASTERIX was written to solve the optimization problem, using a steepest descent technique with a moderate number of diffusion calculations required. Because of the presence of 233Pa in the fuel, the diffusion calculations are nonlinear and are solved numerically by the specially written program CALYPSO. Simulation was performed on simple models of a CANDU 600-MW reactor, with the core divided into two or four refueling zones. Results indicated that the optimization method investigated did work out well and that potential savings of up to 14% in the feed rate are possible for the self-sufficient equilibrium thorium cycle fuel, with an optimum refueling rate of 1.372 × 10−4 MgHE (heavy elements)/MWd. Sensitivity of the optimal discharge burnups to the value of the power-peaking constraint was significant.