ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
P. Thomas, K. Nester
Nuclear Technology | Volume 68 | Number 3 | March 1985 | Pages 293-310
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A33576
Articles are hosted by Taylor and Francis Online.
Experiments were carried out at the Karlsruhe Nuclear Research Center to determine the atmospheric diffusion of pollutants. The influence on atmospheric diffusion by conditions specific to the site was investigated. For this purpose, tritiated water and two different halogenated hydrocarbons are emitted at heights of 60 and 100 m; their local concentration distribution is measured at ground level downwind of the source. The relevant meteorological data are measured at a 200-m-high tower. For evaluation of the measurements the diffusion is assumed to be a steady-state process. A twodimensional Gaussian distribution is used as the theoretical approximation of the concentrations. The dependence of the dispersion parameters σy and σz on the downwind distance is described by a power function. A least-squares fit is applied to calculate the horizontal and vertical dispersion parameters and the normalized diffusion factor from the measured wind velocity, emission rate, and concentration distribution. The errors in the calculated parameters are also determined. The dispersion parameters evaluated are assigned to stability classes by the measured standard deviation of the vertical wind direction.