ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reviewers needed for NRC research proposals
The deadline is fast approaching for submitting an application to become a technical reviewer for the Nuclear Regulatory Commission’s fiscal year 2025 research grant proposals.
Ung-Soo Kim, Poong-Hyun Seong
Nuclear Technology | Volume 141 | Number 2 | February 2003 | Pages 157-166
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT03-A3357
Articles are hosted by Taylor and Francis Online.
In this research, lower shifted worth control rods (LSWCRs) are suggested to mitigate problems related to variation of axial power distribution during the power maneuvering of pressurized water reactors. These rods are classified into two types. The first type is "multipurpose control rod," and the other type is "regulating control rod." Two multipurpose control rod banks (LSWCR1, LSWCR2) and three regulating control rod banks (LSWCR5, LSWCR4, LSWCR3) are suggested and developed. The moving characteristics of LSWCRs, related to variation of reactivity and the axial offset (AO), are analyzed, and the operation strategy for LSWCRs is established. Then, an application of LSWCRs for the power maneuvering is performed using the developed strategy, and the reference daily load pattern is 100-50-100%, 2-6-2-14h pattern that is appropriate for operation of the electric grid in Korea. From the results, it is shown that the combinative use of multipurpose control rods (LSWCR1, LSWCR2) makes it possible to control the AO within the target band during the power maneuvering. Also, the results show that the power maneuvering without reactivity compensation by change of boron concentration is accomplished, and consequently the minimization of boron concentration change is possible.