ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Per Hedemann Jensen
Nuclear Technology | Volume 68 | Number 1 | January 1985 | Pages 29-39
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A33564
Articles are hosted by Taylor and Francis Online.
A computer model DEPSHIELD for the calculation of shielding factors for gamma radiation at indoor residences in multistory and single-family houses has been developed. The model is based on the exponential point kernel that links the radiation flux density at a given detector point to a point-source strength. The radiation sources considered in the model are fallout radioactivity deposited on roofs, outer walls, and ground surfaces. For any combination of source strength on roof, outer wall, and ground surface, the model calculates shielding factors for specified photon energies. The input data are the dimensions of the house, the thickness of the walls and floors, the window dimensions, and the size of the surrounding ground surface. The fallout source strength on the surfaces is allowed to have different values due to different deposition velocities to these surfaces. This feature of the model also makes it possible to determine the dose reduction effect from a decontamination of the different surfaces. The model has been used in a study of the consequences of land contamination of Danish territory after hypothetical core-melt accidents at the Barsebäck nuclear power plant in Sweden. The model has also been used to calculate shielding factors for typical houses in the other Nordic countries.