ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Howard Ocken
Nuclear Technology | Volume 68 | Number 1 | January 1985 | Pages 18-28
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A33563
Articles are hosted by Taylor and Francis Online.
Reducing the cobalt content of materials used in nuclear power plants is one approach to controlling the radiation fields responsible for occupational radiation exposure; corrosion of steam generator tubing is the primary source in pressurized water reactors (PWRs). Wear of the cobalt-base alloys used to hard-face valves (especially feedwater regulator valves) and as pins and rollers in control blades are the primary boiling water reactor (BWR) sources. Routine valve maintenance can also be a significant source of cobalt. Wear, mechanical property, and corrosion measurements led to the selection of Nitronic-60/CFA and PH13-8 Mo/Inconel X-750 as low-cobalt alloys for use as pin/roller combinations. These alloys are currently being tested in two commercial BWRs. Measurements show that Type 440C stainless steel wears less than the cobalt-base alloys in BWR feedwater regulator valves. Sliding wear tests performed at room temperature in simulated PWR water showed that Colmonoy 74 and 84, Deloro 40, and Vertx 4776 are attractive low-cobalt hardfacing alloys if the applied loads are ≾103 MPa. The cobalt-base alloys performed best at high loads (207 MPa). Ongoing laboratory studies address the development and evaluation of cobalt-free iron-base hardfacing alloys and seek to improve the wear resistance of cobalt-base alloys by using lasers. Reducing cobalt impurity levels in core components that are periodically discharged should also help reduce radiation fields and disposal costs.