ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Erik Johansson
Nuclear Technology | Volume 68 | Number 2 | February 1985 | Pages 263-268
Technical Note | Fabrication of Components of the Creys-Malville Plant / Fission Reactor | doi.org/10.13182/NT85-A33559
Articles are hosted by Taylor and Francis Online.
The recycling of plutonium in close-packed pressurized water reactor (PWR) lattices, leading to a higher conversion ratio than recycling in a normal lattice, has been studied by calculations. These calculations were performed with the multigroup cell and assembly transport theory code CASMO. This code, widely used for normal light water reactor (LWR) lattices, was tested for close-packed ones by calculations on experiments. The outcome of these tests was reasonably good for the parameters of greatest importance in close-packed plutonium-recycle lattices. Subsequently, the code was applied to an LWR system containing PWRs with such lattices. The emphasis in this application was on the net consumption of natural uranium and separative work. In an asymptotic (steady-state) situation for the close-packed lattice case, these amounts turned out to be ∼35% below the corresponding ones for plutonium recycling in a normal lattice.