ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Joe E. Dahlquist, Fred S. GL, Ralph A. Nelson
Nuclear Technology | Volume 68 | Number 2 | February 1985 | Pages 252-262
Technical Paper | Fabrication of Components of the Creys-Malville Plant / Heat Transfer and Fluid Flow | doi.org/10.13182/NT85-A33558
Articles are hosted by Taylor and Francis Online.
During normal and accidental operations of a light water nuclear reactor, a wide range of thermal-hydraulic conditions may be encountered for which the critical heat flux (CHF) cannot be predicted by a single correlation. An encompassing model was developed for predicting the steady-state forced convective CHF for water over a wide range of thermal-hydraulic conditions. A CHF model is postulated using a conceptual CHF map to define possible CHF mechanisms for given thermal-hydraulic conditions. Existing steadystate CHF correlations, for which the primary CHF mechanism modeled can be identified, are then used in conjunction with the conceptual CHF map to construct a predictive CHF model. The CHF correlations used as the foundation of this model are the Westinghouse-3, the Biasi, and the Modified-Barnett correlations. These correlations allow coverage of a wide range of thermal-hydraulic conditions, provide favorable comparison with experimental data, and are commonly used in the nuclear industry. The parametric ranges covered by the resultant model are
0.3 < P (MPa) <16.0
6.0 <D (mm) <30.0
100.0 <G (kg/m2·s) < 8000.0
−0.3 <X (dimensionless) < 1.0,where P is pressure; D, the hydraulic diameter; G, the mass flux; and X is quality. The CHF model compares favorably with available experimental data and was used to construct specific CHF maps.