ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Ansar Parvez
Nuclear Technology | Volume 68 | Number 2 | February 1985 | Pages 235-241
Technical Paper | Fabrication of Components of the Creys-Malville Plant / Fuel Cycle | doi.org/10.13182/NT85-A33556
Articles are hosted by Taylor and Francis Online.
The effect of the introduction of 236U because of the recycling of nuclear fuel has been determined for a typical pressurized water reactor fuel cycle. It has been estimated that an extra 0.255 g of 235U is required for each gram of 236U present at the beginning of exposure. In terms of cost, the additional 235U translates into an ∼1% increase in the fuel cost for every gram of 236U. The value of the uranium component of the exposed fuel has also been calculated in terms of the savings in separative work and the feed requirements resulting from the use of recycled uranium. While the exact value depends on the fuel cycle component costs and the relative concentrations of 235U and 236U, it is estimated that even after accounting for the presence of 236U, the use of reprocessed uranium may result in a total saving of ∼14% in ore and enrichment costs. It was also found that upon repeated recycling, 236U reaches an equilibrium concentration, but only if the recycled fuel ratio in the feed to enrichment plant is limited to about 1 part in 5.