ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. Krieg, B. Dolensky, B. Göller, W. Breitung, R. Redlinger, P. Royl
Nuclear Technology | Volume 141 | Number 2 | February 2003 | Pages 109-121
Technical Paper | Reactor Safety | doi.org/10.13182/NT03-3
Articles are hosted by Taylor and Francis Online.
Because hydrogen combustion is one of the major containment threats during severe accidents, different hydrogen mitigation measures have been implemented in nuclear power plants throughout the world. In German Konvoi plants passive autocatalytic recombiners have been selected for hydrogen risk reduction. This paper proposes a new further improved option by taking credit from both the recombiners for hydrogen releases on slow timescales and the large load-carrying capacity of the spherical steel containment for rapid releases. Therefore, the capacity of spherical steel containment shells is investigated in some detail. The hydrogen and steam distribution in the containment is simulated for a rather conservative accident scenario with a rapid hydrogen release; a large hydrogen detonation is assumed and the transient containment loads as well as the structural containment response are calculated. For all these analyses advanced methods with high time and space resolutions are applied.Detailed evaluations of the structural results considering recent experimental findings suggest that the spherical steel containment can carry the detonation loads. For the final assessment additional accident scenarios must be considered and more plant specific finite element models for the structural response must be applied. Some very local integrity issues need further investigations.