ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. Krieg, B. Dolensky, B. Göller, W. Breitung, R. Redlinger, P. Royl
Nuclear Technology | Volume 141 | Number 2 | February 2003 | Pages 109-121
Technical Paper | Reactor Safety | doi.org/10.13182/NT03-3
Articles are hosted by Taylor and Francis Online.
Because hydrogen combustion is one of the major containment threats during severe accidents, different hydrogen mitigation measures have been implemented in nuclear power plants throughout the world. In German Konvoi plants passive autocatalytic recombiners have been selected for hydrogen risk reduction. This paper proposes a new further improved option by taking credit from both the recombiners for hydrogen releases on slow timescales and the large load-carrying capacity of the spherical steel containment for rapid releases. Therefore, the capacity of spherical steel containment shells is investigated in some detail. The hydrogen and steam distribution in the containment is simulated for a rather conservative accident scenario with a rapid hydrogen release; a large hydrogen detonation is assumed and the transient containment loads as well as the structural containment response are calculated. For all these analyses advanced methods with high time and space resolutions are applied.Detailed evaluations of the structural results considering recent experimental findings suggest that the spherical steel containment can carry the detonation loads. For the final assessment additional accident scenarios must be considered and more plant specific finite element models for the structural response must be applied. Some very local integrity issues need further investigations.