ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Alireza Behbahani, Don W. Miller
Nuclear Technology | Volume 67 | Number 1 | October 1984 | Pages 14-22
Technical Paper | Fission Reactor | doi.org/10.13182/NT84-A33525
Articles are hosted by Taylor and Francis Online.
An analytical neutron sensor response model and methods for measurement of neutron sensor (compensated ionization chamber) transient response have been developed and evaluated. In situ measurement methods to meet the provisions of the Instrument Society of America Draft Standard dS67.06, Institute of Electrical and Electronics Engineers 338-1977, and U.S. Nuclear Regulatory Commission Guide 1.118 are included. In one in situ method, the high-voltage sensor power supply is perturbed and subsequent sensor response measured. The response is analytically and experimentally related to the response of the sensor to a transient change in radiation flux. Random signal analysis was a second in situ technique evaluated to monitor the transient response of the neutron sensor. In this method the power spectrum of the inherent random fluctuations from the neutron sensor output is measured and analyzed. Transient response was experimentally and analytically evaluated to identify mechanisms that may cause degradation in the response of neutron sensors. Response time degradation was investigated by changing the sensor and signal cable response time in a predictable manner (through changes in the detector fill gas and the use of a delay line and different terminations in series or parallel with the signal cable). Sensors and attached cables having different response times were evaluated using power supply perturbation, transient change in radiation flux, and analysis of the random signals from the neutron sensor. The primary objectives of the experimental evaluation were to correlate the measured response time using transient radiation flux changes with response to a power supply perturbation and to confirm the analytical model. The primary objectives of developing the analytical model of sensor response were to predict response time and to evaluate degradation mechanisms. It is shown that degradation in neutron sensor response time, which may not be significant to the operation of a reactor protection system, is related to degradation in sensitivity and linearity, and that simulated degradation in response time can be detected through the two techniques developed.