ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Randall R. Nason*
Nuclear Technology | Volume 67 | Number 2 | November 1984 | Pages 333-340
Technical Paper | Technique | doi.org/10.13182/NT84-A33521
Articles are hosted by Taylor and Francis Online.
The adjoint technique has been applied to accurately and economically predict the response of a portal monitor to photon emissions below ∼1.5 MeV, thus encompassing those sources generally of interest in nuclear safeguards applications. The adjoint source was defined as the product of the total attenuation coefficient and an experimentally determined efficiency factor, which accounts for the performance characteristics of the signal-processing system. The efficiency factor was determined from a combination of data obtained from a single NE-102 scintillator and results from corresponding three-dimensional forward MORSE calculations. A prototype walk-through portal was then fabricated with four identical NE-102 scintillators. Adjoint MORSE calculations were performed to obtain net count rates for various sources within this portal. These results were compared to experimental data and were found to agree to well within 10%. The photon response within the portal detection volume was then characterized by a series of MORSE calculations.