ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
August W. Cronenberg, Douglas W. Croucher, Philip E. MacDonald
Nuclear Technology | Volume 67 | Number 2 | November 1984 | Pages 312-325
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT84-A33519
Articles are hosted by Taylor and Francis Online.
Fuel melting in severe core damage accidents will lead to the rapid release of fission gas from the fuel matrix and the volatilization of low boiling point metallic inclusions, which can be expected to significantly influence molten fuel dynamics. A quantitative analysis of UO2 foaming potential is based on an assessment of the time characteristics for bubble growth, surface escape, film thinning, and bubble coalescence. Analysis indicates that although the potential exists for early molten UO2 foaming, such foams are basically unstable and tend to collapse, thereby releasing volatilized fission products from the molten fuel debris. Release of such fission products will impact radiological source term evaluation and can result in up to a 40% reduction in the residual decay heat within the core debris. This reduction in core debris heat level will influence the timing and meltdown sequence for such accidents and can impact the heat load requirements of residual heat removal systems or other engineered melt mitigation devices.