ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
Vincent P. Manno, Michael W. Golay
Nuclear Technology | Volume 67 | Number 2 | November 1984 | Pages 302-311
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT84-A33518
Articles are hosted by Taylor and Francis Online.
The principal developmental focus of the LIMIT code is the ability to model hydrogen transport accurately in reactor containments. The program is capable of treating rapid two-phase dominated blowdown transients, slower mixing events in which diffusional transport is important, and lumped or nodal multicompartment analysis. The code’s features include versatile multidimensional geometry options and models of ancillary equipment including solid heat sinks and mass and energy sources. The program is applied to a number of pertinent problems including continuum analysis of a hydrogen/water blowdown, simulation of experimental tests performed at the Battelle-Frankfurt Institute and the Hanford Engineering Development Laboratory, and lumped parameter studies of connected room problems. The code is shown to be capable of accurately treating a wide range of problems with reasonable computational efficiency. The need for even better efficiency, additional equipment submodels, and further validation are the code’s principal limitations.