ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Vincent P. Manno, Michael W. Golay
Nuclear Technology | Volume 67 | Number 2 | November 1984 | Pages 302-311
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT84-A33518
Articles are hosted by Taylor and Francis Online.
The principal developmental focus of the LIMIT code is the ability to model hydrogen transport accurately in reactor containments. The program is capable of treating rapid two-phase dominated blowdown transients, slower mixing events in which diffusional transport is important, and lumped or nodal multicompartment analysis. The code’s features include versatile multidimensional geometry options and models of ancillary equipment including solid heat sinks and mass and energy sources. The program is applied to a number of pertinent problems including continuum analysis of a hydrogen/water blowdown, simulation of experimental tests performed at the Battelle-Frankfurt Institute and the Hanford Engineering Development Laboratory, and lumped parameter studies of connected room problems. The code is shown to be capable of accurately treating a wide range of problems with reasonable computational efficiency. The need for even better efficiency, additional equipment submodels, and further validation are the code’s principal limitations.