ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reviewers needed for NRC research proposals
The deadline is fast approaching for submitting an application to become a technical reviewer for the Nuclear Regulatory Commission’s fiscal year 2025 research grant proposals.
Humberto E. Garcia, Richard B. Vilim
Nuclear Technology | Volume 141 | Number 1 | January 2003 | Pages 69-77
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT03-A3351
Articles are hosted by Taylor and Francis Online.
Two basic approaches can be mentioned to model physical systems. One approach derives a model structure from the known physical laws. However, obtaining a model with the required fidelity may be difficult if the system is not well understood. A second approach is to employ a black-box structure to learn the implicit input-output relationships from measurements in which no particular attention is paid to modeling the underlying processes. A method that draws on the respective strengths of each of these two approaches is described. The technique integrates known first-principles knowledge derived from physical modeling with measured input-output mappings derived from neural processing to produce a computer model of a dynamical process. The technique is used to detect operational changes of mechanical equipment by statistically comparing, using a likelihood test, the predicted model output for the given measured input with the actual process output. Experimental results with a peristaltic pump are presented.