ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Humberto E. Garcia, Richard B. Vilim
Nuclear Technology | Volume 141 | Number 1 | January 2003 | Pages 69-77
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT03-A3351
Articles are hosted by Taylor and Francis Online.
Two basic approaches can be mentioned to model physical systems. One approach derives a model structure from the known physical laws. However, obtaining a model with the required fidelity may be difficult if the system is not well understood. A second approach is to employ a black-box structure to learn the implicit input-output relationships from measurements in which no particular attention is paid to modeling the underlying processes. A method that draws on the respective strengths of each of these two approaches is described. The technique integrates known first-principles knowledge derived from physical modeling with measured input-output mappings derived from neural processing to produce a computer model of a dynamical process. The technique is used to detect operational changes of mechanical equipment by statistically comparing, using a likelihood test, the predicted model output for the given measured input with the actual process output. Experimental results with a peristaltic pump are presented.