ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Takashi Murakami, Tsunetaka Banba
Nuclear Technology | Volume 67 | Number 3 | December 1984 | Pages 419-428
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT84-A33499
Articles are hosted by Taylor and Francis Online.
The Soxhlet-type leaching test was carried out on borosilicate glass that contained 14 wt% simulated high-level waste. The morphology, texture, composition, and crystallography of the surface layers that formed were examined using optical microscopy, scanning electron microscopy, electron probe microanalysis, and analytical electron microscopy. Four surface layers, made up of 100- to 1000-Å crystalline and noncrystalline particles, formed on the glass. The elements found were classified into three groups based on their behavior in the surface layers. Group I contained the alkali metals, such as sodium, potassium, and cesium, which were strongly depleted from the layers as a result of leaching. Group II contained elements such as manganese, iron, nickel, zirconium, lanthanum, cerium, and neodymium, which were more concentrated in the surface layers than in the unleached part of the specimen, probably because the layers had shrunk during the drying process. Group III contained the elements which behaved inconsistently as a group: Some, such as calcium, silicon, and aluminum, were poor in the layers; magnesium and barium were present, but had concentration profiles that differed from those of Group II. Only one crystalline phase, a sheet silicate, formed in the layers. It had the expected chemical form, (Ca, Ba, La, Ce, Nd)x(Mn, Fe, Zr, Mg, Ni, Al)y(Si, Al)z(O, OH)m; its formation probably influenced the leaching mechanisms.