ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
James M. Wu, Chun-Fa Chuang
Nuclear Technology | Volume 67 | Number 3 | December 1984 | Pages 381-406
Technical Paper | Nuclear Safety | doi.org/10.13182/NT84-A33496
Articles are hosted by Taylor and Francis Online.
A flashing droplet model was developed to examine the rupture flow of reactor coolant and its transport phenomena through the stream generator during a steam generator tube rupture accident. The model includes flashing flow; droplet formation; droplet removal by tube bundles, bubble scrubbing, steam separators, and steam dryers; and droplet size change by evaporation and condensation. The calculation follows the actual sequence of events during the accident. Those reactor coolant droplets escaping from the steam generator are used to estimate the radioactivity released into the environment. The steam generator tube rupture accident that occurred at the Prairie Island Plant on October 2, 1979, was studied using the model. The model estimated a release of 204 µCi of 131 I equivalent activity. The U.S. Nuclear Regulatory Commission estimated a 210-µCi release, assuming an iodine partition factor of 1/100 in the steam generator. The model was also used to analyze a hypothetical steam generator tube rupture accident coupled with loss of off-site power in a large 1100-MW(electric) Westinghouse four-loop plant. The model estimated that 45 Ci of 131 I equivalent activity could be released through the relief valves, which were stuck open for 30 min. The number is eight times higher than the estimate from the Westinghouse safety analysis report using a uniform mixing model.