ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Masaki Kitagawa, Hiroshi Hattori, Akira Ohtomo, Tetsuo Teramae, Junichi Hamanaka, Hiroshi Ukikusa
Nuclear Technology | Volume 66 | Number 3 | September 1984 | Pages 675-684
H. Design Codes and Life Prediction | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33489
Articles are hosted by Taylor and Francis Online.
A design guide for high-temperature gas-cooled reactor components is proposed and applied to the design and construction of the l.5-MW(thermal) helium heat exchanger test loop for nuclear steelmaking. To assure that the design method covers all conceivable failure modes and has a large enough safety margin, a series of lifetime tests of partial model may be needed. For this project, three types of model tests are performed. A lifetime test of an in-scale model of the center manifold pipe and eight heat exchanger tubes is described. Applied load is the combination of the simulated thermal expansion stress (deformation controlled quantity) and primary stress by internal pressure of tubes. The level of both loads is much higher than the corresponding values in the actual plant, which causes failure of the model in a shorter time. The eight tubes are arranged so that each is subjected to different damage conditions. The lifetime tests ran for 48 days, and six tubes out of eight failed during the test at the highest stressed stub tubes. Other parts of the components were found to be sound after the test. A damage criterion with a set of material constants and a simplified method for stress-strain analysis for a stub tube under a three-dimensional load are newly developed and used to predict the lives of each tube. The predicted lives are compared with the experimental lives and good agreement is found. The lifetime test model is evaluated according to the proposed design guide, and it is found that the guide has a safety factor of ∼200 in life for this particular model.