ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Masaki Kitagawa, Hiroshi Hattori, Akira Ohtomo, Tetsuo Teramae, Junichi Hamanaka, Hiroshi Ukikusa
Nuclear Technology | Volume 66 | Number 3 | September 1984 | Pages 675-684
H. Design Codes and Life Prediction | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33489
Articles are hosted by Taylor and Francis Online.
A design guide for high-temperature gas-cooled reactor components is proposed and applied to the design and construction of the l.5-MW(thermal) helium heat exchanger test loop for nuclear steelmaking. To assure that the design method covers all conceivable failure modes and has a large enough safety margin, a series of lifetime tests of partial model may be needed. For this project, three types of model tests are performed. A lifetime test of an in-scale model of the center manifold pipe and eight heat exchanger tubes is described. Applied load is the combination of the simulated thermal expansion stress (deformation controlled quantity) and primary stress by internal pressure of tubes. The level of both loads is much higher than the corresponding values in the actual plant, which causes failure of the model in a shorter time. The eight tubes are arranged so that each is subjected to different damage conditions. The lifetime tests ran for 48 days, and six tubes out of eight failed during the test at the highest stressed stub tubes. Other parts of the components were found to be sound after the test. A damage criterion with a set of material constants and a simplified method for stress-strain analysis for a stub tube under a three-dimensional load are newly developed and used to predict the lives of each tube. The predicted lives are compared with the experimental lives and good agreement is found. The lifetime test model is evaluated according to the proposed design guide, and it is found that the guide has a safety factor of ∼200 in life for this particular model.