ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Fusion office bill introduced in line with DOE reorganization plan
Cornyn
Padilla
Sens. Alex Padilla (D., Calif.) and John Cornyn (R., Texas) have introduced bipartisan legislation to formally establish the Office of Fusion at the Department of Energy. This move seeks to codify one of the many changes put forward by the recent internal reorganization plan for offices at the DOE.
Companion legislation has been introduced in the House of Representatives by Reps. Don Beyer (D., Va.) and Jay Obernolte (R., Calif.), who are cochairs of the House Fusion Energy Caucus.
Details: According to Obernolte, “Congress must provide clear direction and a coordinated federal strategy to move fusion from the lab to the grid, and this legislation does exactly that.”
Nuclear Technology | Volume 66 | Number 3 | September 1984 | Pages 630-638
G. Irradiation Behavior | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33484
Articles are hosted by Taylor and Francis Online.
The effect of neutron irradiation on hightemperature tensile and creep properties of austenitic heat-resistant alloys was studied. The effect, which appeared in the loss of ductility at elevated temperatures, was caused by helium produced by a nuclear transmutation reaction of thermal neutrons with boron and nickel in the alloy. The fracture mode was characterized by intergranular cracking. The tensile properties were determined at 700 to 1000°C after irradiation up to a maximum thermal neutron fluence of 1.2 x 1025 n/m2. Creep tests were made at 900°C after irradiation to 6.6 x 1024 and 7.5 x 1024 n/m2. The tensile ductility was reduced with increasing deformation temperature, due primarily to the loss of necking elongation. In the postirradiation creep tests, significant reduction in rupture life also occurred. In both tensile and creep properties, the iron-base alloys were superior to the nickel-rich alloys, and, in particular, a heat of Incoloy alloy 800 showed exceptionally high resistance to irradiation.