ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Naoki Kishimoto, Tatsuhiko Tanabe, Hiroshi Araki, Heitaro Yoshida, Ryoji Watanabe
Nuclear Technology | Volume 66 | Number 3 | September 1984 | Pages 578-594
F. Hydrogen and Tritium Permeation | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33480
Articles are hosted by Taylor and Francis Online.
Hydrogen permeation of nickel-base heat-resistant alloys in a process gas environment is investigated in a high-temperature range up to 1273 K. Time-dependent permeation behavior of candidate alloys (R, NSC-1, SZ, KSN, 113M, and Hastelloy XR-51) for intermediate heat exchangers of a high-temperature gas-cooled reactor is examined in a reducing gas of 80% H2 + 15% CO + 5% CO2. The result in the reducing gas is compared to that of the permeation in pure hydrogen. For both measurements, a helium carrier gas method is used, simulating the practical configuration of the heat exchangers. The permeation rate decreased proportionally to the inverse of the square root of time in the reducing gas and had a square root dependence on hydrogen pressure at a constant thickness of the oxide layer. These results are discussed on the basis of a two-layer diffusion model.