ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Naoki Kishimoto, Tatsuhiko Tanabe, Hiroshi Araki, Heitaro Yoshida, Ryoji Watanabe
Nuclear Technology | Volume 66 | Number 3 | September 1984 | Pages 578-594
F. Hydrogen and Tritium Permeation | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33480
Articles are hosted by Taylor and Francis Online.
Hydrogen permeation of nickel-base heat-resistant alloys in a process gas environment is investigated in a high-temperature range up to 1273 K. Time-dependent permeation behavior of candidate alloys (R, NSC-1, SZ, KSN, 113M, and Hastelloy XR-51) for intermediate heat exchangers of a high-temperature gas-cooled reactor is examined in a reducing gas of 80% H2 + 15% CO + 5% CO2. The result in the reducing gas is compared to that of the permeation in pure hydrogen. For both measurements, a helium carrier gas method is used, simulating the practical configuration of the heat exchangers. The permeation rate decreased proportionally to the inverse of the square root of time in the reducing gas and had a square root dependence on hydrogen pressure at a constant thickness of the oxide layer. These results are discussed on the basis of a two-layer diffusion model.