ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Hans Huschka, Guenther Luthardt, Volker E. Portscher
Nuclear Technology | Volume 66 | Number 3 | September 1984 | Pages 562-569
F. Hydrogen and Tritium Permeation | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33478
Articles are hosted by Taylor and Francis Online.
One crucial point of the prototype nuclear process heat is the permeation of hydrogen isotopes through the walls of the heat exchanger materials. The in situ growth of oxide layers provides an effective barrier against hydrogen permeation. Basic investigations with a large scope of heat-resistant alloys have been carried out by Kernforschungsanlage (KFA) Jülich. Further research has been done by NUKEM and Maschinenfabrik Augsburg-Nürnberg, Neue Technologie, to develop superior coatings that are effective from reactor startup. The NUKEM procedure is a simple and cost-efficient method. It comprises oxidation of the disk-shaped metal samples in excess steam (with or without addition of other gases) at elevated temperatures in a once-through manner. Adjustments of various parameters are being made to work out the conditions for optimal quality of the oxides on several alloys. Evaluation is based on permeation measurements with deuterium in the Deuperm facility of KFA. In some cases, tritium permeability was determined at the University of Münster. Backup information is provided by scanning electron microscope analysis, diffractometry, and microprobe examination. First coating experiments with steam/air yielded duplex scales consisting of an inner oxide, which is mainly Cr2O3 and an outer layer of the spinel type containing iron, nickel, and chromium, as well as some manganese throughout the scale. A compositional shift toward chromium oxide monolayers obtained with oxidation in steam correlates with improved permeation properties. Their quality depends strongly on various parameters of the procedure, which are currently being optimized. These are chiefly surface grinding, recrystallization annealing, and possibly thermocycling. For Hastelloy-X, best results are obtained with steam oxidation at 1000°C. Until now, permeability has been reduced by a factor of several hundred with disk specimens. Postoxidation by means of process gas exposure at Rheinbraun further increased the factor to over one thousand, the same as with tube specimens in Auwarm. The adherence to the metal matrix is excellent throughout; no spalling has been observed.