ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kenji Kikuchi, Hideo Kaburaki, Konomo Sanokawa, Katsuyuki Kawaguchi, Masaaki Nemoto, Shintaro Watanabe
Nuclear Technology | Volume 66 | Number 3 | September 1984 | Pages 491-502
E. Friction and Wear | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33471
Articles are hosted by Taylor and Francis Online.
In a very high temperature gas-cooled reactor developed at the Japan Atomic Energy Research Institute, reactor components, such as heat transfer tubes (Hastelloy-XR) of an intermediate heat exchanger, hot duct liners (Hastelloy-XR), core support plates ( Cr-1 Mo steel), control rod sheaths (Hastelloy-XR), orifice devices (SUS 304), fuel blocks (graphite), and others, are exposed to helium gas coolant with a temperature of 1000°C and a pressure of 4.1 MPa. The relative sliding movements of the structure, which are stimulated by flow-induced vibration, constraint force, and thermal expansion, might cause unfavorable friction and wear. Sliding wear tests were carried out on PGX graphite, Cr-1 Mo steel, and heat- and corrosion-resistant Hastelloy-XR in 500 to 1000°C. Environmental helium gas pressures of 0.2 and 4.1 MPa were chosen to compare the influence of the pressures. The effects of four different impurity gases (O2, H2, H2O, and CH4) on tribological behavior were studied, each gas concentration being varied up to ∼103 ppm. The specimen was a hemisphere-on-plate type, the plate being oscillated with a 5-Hz frequency and a 0.5-mm amplitude under a 9.8-N contacting load. The test duration was 3 h. In the case of Hastelloy-XR against itself, wear was adhesive in general, but the friction coefficient decreased to ∼0.3 in the environment with high-O2 concentration, and a relatively thick oxide film was found on the sliding surface. The results of calorized Hastelloy-XR against PGX graphite showed little dependence on impurity gas, and a lower value friction coefficient of ∼0.1 was obtained. In Cr-1 Mo steel against PGX graphite, thin layers of Fe2O3 and/or Fe3O4 were formed on the metal surfaces in the environment containing O2, and the friction coefficient gradually increased with high-O2 concentration. The case of PGX graphite against itself gave a low friction coefficient of ∼0.1 in the environment of high-O2 concentration, whereas in other impurity gases the value was ∼0.4.