ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Kenji Kikuchi, Hideo Kaburaki, Konomo Sanokawa, Katsuyuki Kawaguchi, Masaaki Nemoto, Shintaro Watanabe
Nuclear Technology | Volume 66 | Number 3 | September 1984 | Pages 491-502
E. Friction and Wear | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33471
Articles are hosted by Taylor and Francis Online.
In a very high temperature gas-cooled reactor developed at the Japan Atomic Energy Research Institute, reactor components, such as heat transfer tubes (Hastelloy-XR) of an intermediate heat exchanger, hot duct liners (Hastelloy-XR), core support plates ( Cr-1 Mo steel), control rod sheaths (Hastelloy-XR), orifice devices (SUS 304), fuel blocks (graphite), and others, are exposed to helium gas coolant with a temperature of 1000°C and a pressure of 4.1 MPa. The relative sliding movements of the structure, which are stimulated by flow-induced vibration, constraint force, and thermal expansion, might cause unfavorable friction and wear. Sliding wear tests were carried out on PGX graphite, Cr-1 Mo steel, and heat- and corrosion-resistant Hastelloy-XR in 500 to 1000°C. Environmental helium gas pressures of 0.2 and 4.1 MPa were chosen to compare the influence of the pressures. The effects of four different impurity gases (O2, H2, H2O, and CH4) on tribological behavior were studied, each gas concentration being varied up to ∼103 ppm. The specimen was a hemisphere-on-plate type, the plate being oscillated with a 5-Hz frequency and a 0.5-mm amplitude under a 9.8-N contacting load. The test duration was 3 h. In the case of Hastelloy-XR against itself, wear was adhesive in general, but the friction coefficient decreased to ∼0.3 in the environment with high-O2 concentration, and a relatively thick oxide film was found on the sliding surface. The results of calorized Hastelloy-XR against PGX graphite showed little dependence on impurity gas, and a lower value friction coefficient of ∼0.1 was obtained. In Cr-1 Mo steel against PGX graphite, thin layers of Fe2O3 and/or Fe3O4 were formed on the metal surfaces in the environment containing O2, and the friction coefficient gradually increased with high-O2 concentration. The case of PGX graphite against itself gave a low friction coefficient of ∼0.1 in the environment of high-O2 concentration, whereas in other impurity gases the value was ∼0.4.