ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Aleksandra Czyrska-Filemonowicz, Philip J. Ennis
Nuclear Technology | Volume 66 | Number 1 | July 1984 | Pages 149-157
B. Structural Characterization of Microstructure and Matallographical Aspect | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33463
Articles are hosted by Taylor and Francis Online.
The effect of carburization on the impact strength and microstructure of the commercial Fe-32 Ni-20 Cr alloy 800H has been investigated in the 20 to 800°C temperature range. The properties and microstructure of test pieces carburized at 850°C for up to 500 h in an argon-10 vol% methane atmosphere and of specimens heat treated at 850°C in an inert atmosphere for the same times were compared. The results showed that aging at 850°C reduced the impact strength at 20 to 800°C. With an increasing degree of carburization, the impact strength was progressively reduced to ∼50 J at a bulk carbon content of 0.6 wt%. Heat treatment after carburization caused a further decrease in impact strength as the depth of carbon penetration increased. Microstructural examination by optical and transmission electron microscopy (TEM) of broken test specimens showed precipitation of M23C6 carbides on grain and twin boundaries and intragranular fine precipitation of TiC and M23C6 as well as the presence of primary titanium carbonitrides. The TEM investigations using extraction replica and thin foil techniques established that the M23C6 carbides at grain boundaries retained a crystallographic orientation to one grain and grew into the adjacent grain. Lamellae of M23C6 carbides precipitated on noncoherent twin boundaries grew into the grain parallel to the twin plane, whereas M23C6 on coherent twin planes grew as plates along the twinning plane.