ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
W. R. Johnson, L. D. Thompson, Thomas A. Lechtenberg
Nuclear Technology | Volume 66 | Number 1 | July 1984 | Pages 88-101
A. Selection, Production, and Development of Alloys for HTGR Component | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33458
Articles are hosted by Taylor and Francis Online.
The utilization of the high-temperature gas-cooled reactor (HTGR) for advanced or process heat applications will require the use of wrought components operating at temperatures up to 1000°C (1832°F) for times approaching 30 yr. Alloys for such components must withstand the corrosive effects (carburization and oxidation) of the impure helium primary coolant environment and maintain adequate elevated temperature strength. Commercially available wrought alloys have been found to be seriously limited for such applications because of their inherently poor resistance to corrosion in impure helium. As one approach to the solution of this problem, a program has been initiated to develop wrought alloys having a better combination of corrosion resistance and high-temperature strength, under advanced HTGR conditions, than commercial alloys currently available. This program culminated in 1980 with the design, melting, and fabrication of ten experimental Ni-Cr-Mo-W-Al-Ti-Zr-C alloys and with the initiation of efforts to evaluate their corrosion and mechanical behavior. Results of tests showed that all the experimental alloys exhibited superior carburization resistance in advanced reactor helium. In addition, several of the alloys exhibited excellent mechanical properties, including, in the case of one alloy, creep rupture strength at 900°C (1652°F), significantly better than that of the commercial alloy Inconel-617.