ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Ryohei Tanaka, Tatsuo Kondo
Nuclear Technology | Volume 66 | Number 1 | July 1984 | Pages 75-87
A. Selection, Production, and Development of Alloys for HTGR Component | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33457
Articles are hosted by Taylor and Francis Online.
The developments of the last decade are reviewed on a technical basis for heat-resistant alloys in application to the high-temperature structural components of the process heating high-temperature gas-cooled reactor. The major activities have fallen into two categories: the near-term development for the experimental reactor and the long-term R&D second-generation applications, i.e., for the materials to be used in the second-stage heat exchanger installation in the experimental reactor and those for advanced-stage reactors with very high outlet temperatures. In both categories of programs, significant advances have been made, respectively, in providing and testing a modified commercial alloy with enhanced compatibility with the service environments and in selecting potential high performance alloys from the new developmental candidate alloys. Modification of the existing commercial alloy was achieved through the application of the finding on enhanced oxidation resistance by controlling the common impurities in the material, while the enhanced creep rupture strength recognized in the best performing new alloys has been attributed to the precipitation of a tungsten-rich phase (α2) during holding at test temperatures. The new alloy development program currently under way is also introduced.