ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
C. C. Li, W. R. Johnson, L. D. Thompson
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 439-464
D.Gas/Metal Reaction | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33446
Articles are hosted by Taylor and Francis Online.
The influence of a simulated advanced reactor helium environment, containing 50 Pa H2/5 Pa CH4/5 Pa CO/∼0.1 Pa H2O, on the mechanical properties of two heats of Hastelloy alloy X is discussed. Simultaneous exposures in air and controlled impurity helium at temperatures in the range of 650 to 1000°C for times of 3000 h or more were performed. A combination of tensile testing, Charpy V-notch impact toughness testing, and creep testing was used to study the effects of reactor helium/metal interactions on the mechanical behavior of this alloy. Carburization was identified as the primary corrosion phenomenon. Increasing exposure time and temperature were observed to increase the depth of carburization. The increase in carbon concentration in the carburized zone suppressed the additional formation of M6C, which is observed in air-aged specimens, and resulted in the precipitation of M23C6 a chromium-rich carbide variant. The precipitation of M23C6 in the carburized zone occurred primarily along grain and twin boundaries; matrix precipitation, however, was also observed, the degree of which depended on exposure temperature. Strength and impact toughness properties were found to be controlled primarily by thermal aging reactions, with only a small effect related to the carburization. Although tensile and creep ductilities were decreased as a result of carburization, substantial ductility remained. Variation was observed between the two heats, the finer grained heat appearing to be weaker in the high-temperature creep tests and also possibly more susceptible to a loss of creep strength as a result of carburization.