ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
C. C. Li, W. R. Johnson, L. D. Thompson
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 439-464
D.Gas/Metal Reaction | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33446
Articles are hosted by Taylor and Francis Online.
The influence of a simulated advanced reactor helium environment, containing 50 Pa H2/5 Pa CH4/5 Pa CO/∼0.1 Pa H2O, on the mechanical properties of two heats of Hastelloy alloy X is discussed. Simultaneous exposures in air and controlled impurity helium at temperatures in the range of 650 to 1000°C for times of 3000 h or more were performed. A combination of tensile testing, Charpy V-notch impact toughness testing, and creep testing was used to study the effects of reactor helium/metal interactions on the mechanical behavior of this alloy. Carburization was identified as the primary corrosion phenomenon. Increasing exposure time and temperature were observed to increase the depth of carburization. The increase in carbon concentration in the carburized zone suppressed the additional formation of M6C, which is observed in air-aged specimens, and resulted in the precipitation of M23C6 a chromium-rich carbide variant. The precipitation of M23C6 in the carburized zone occurred primarily along grain and twin boundaries; matrix precipitation, however, was also observed, the degree of which depended on exposure temperature. Strength and impact toughness properties were found to be controlled primarily by thermal aging reactions, with only a small effect related to the carburization. Although tensile and creep ductilities were decreased as a result of carburization, substantial ductility remained. Variation was observed between the two heats, the finer grained heat appearing to be weaker in the high-temperature creep tests and also possibly more susceptible to a loss of creep strength as a result of carburization.