ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Karl G. E. Brenner, Leslie W. Graham
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 404-414
D.Gas/Metal Reaction | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33443
Articles are hosted by Taylor and Francis Online.
The main processes of metallic corrosion in primary circuits of advanced high-temperature gas-cooled reactors (HTGRs) at temperatures above 800 °C are oxidation, carburization, and decarburization. These are caused by helium impurity traces of H2O (causing oxidation and decarburization), CO (causing oxidation and carburization), and CH4 (causing carburization). At the very low partial pressures of these impurities, the three processes happen independently, leading to a multitude of corrosion effects, which can be classified in terms of active and passive regimes. In an active regime internal corrosion proceeds rapidly— usually linear with exposure time—thereby severely affecting the structural integrity of the alloy. Passive regimes are characterized by stable oxide layers, which either completely inhibit internal corrosion or limit it to a parabolic dependence with exposure time. These passive and active regimes can be related to absolute partial pressures and partial pressure ratios of the main gaseous impurities, H2O, CO, and CH4. This relationship is illustrated in the form of ternary corrosion maps termed Ternary Environmental Attack diagrams. For each temperature and alloy, such a diagram can be constructed from existing results and used for outlining the likely shape of the passive area for the given temperature. A set of diagrams defines a common passive area for a given alloy over a temperature range, which can be compared with the range of gas compositions expected in the HTGR primary circuit. If it is found that the area representing the expected primary circuit environment is not fully enclosed in the passive corrosion area for commercially available candidate alloys, it will either be necessary to control the primary circuit impurity concentration to such levels that the gas composition is completely shifted into the passive corrosion area, or it will be necessary to develop new alloys with passive corrosion areas big enough to engulf any given primary circuit environment.