ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Klaus Krompholz, Erik Bodmann, Günter K. H. Gnirss, Horst Huthmann
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 371-379
C.5. Fracture Mechanic | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33440
Articles are hosted by Taylor and Francis Online.
The prototype nuclear process heat plant and the high-temperature gas-cooled reactor need materials that can withstand temperatures up to 1223K (950°C). An elaboration of fracture mechanics concepts that holds for the complete temperature regime must consider all possible phenomena like creep damage and precipitation during exposure, etc. In tests on the Inconel-617, Hastelloy-X, and Nimonic-86 alloys with respect to fatigue crack growth, creep crack growth, and toughness (J integral R curves) up to 1273 K (1000°C), the first creep crack growth results were obtained in helium to compare with the air results. It was shown that pure fatigue crack growth behavior can be described by linear elastic fracture mechanics up to 1273 K. An example of Hastelloy-X at 1223 K proves that evaluating fatigue crack growth according to the J integral concept gives, within a small scatterband, the same results as by following the linear elastic concept. Hastelloy-X shows a decreasing fracture toughness with increasing temperatures. It is emphasized that the J integral concept holds only if creep deformation can be neglected. The experimental evidence at highest temperatures shows that the J integral R curve is not at all similar to that found at lower temperatures under ideal conditions. Creep crack growth for Nimonic-86 at 1073 ≤ T/K ≤ 1273 shows that crack growth at 1223 K in helium is found to be larger than in air. Problems arise when correlating the creep crack growth results. The application of the energy rate integral C* seems promising, but this has yet to be proven. A combination of long-term creep with fatigue crack growth is presently impossible.