ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Philip J. Ennis, Klaus P. Mohr, Hans Schuster
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 363-368
C.4. Short-Term Property | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33439
Articles are hosted by Taylor and Francis Online.
Carburization of high-temperature alloys has been frequently observed during exposure to dry high-temperature gas-cooled reactor (HTGR) helium compositions. Therefore, the influence of carburization on mechanical properties of alloys that may be used for HTGR high-temperature components has been studied. In creep rupture tests on high-temperature alloys for up to 20 000 h, the data in air and in various simulated HTGR heliums lie in the same scatterband irrespective of carburization that has been observed in the contaminated helium atmospheres. The dependence of room temperature tensile properties and the impact strength in the 20 to 800 °C range on the carburization level has been measured so that the maximum carbon level for a given room temperature ductility and impact strength could be specified. The results showed that the minimum room temperature elongation fell to below 5% when the carbon content exceeded 0.5 wt% for Incoloy-800H and 0.2 wt% for lnconel-617. At these carbon levels, the alloys have impact strengths (ISO V-notch specimens) of ∼50 J or above at temperatures in the 25 to 800°C range.