ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Udo Bruch, Dieter Schuhmacher, Philip J. Ennis, Eberhard te Heesen
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 357-362
C.4. Short-Term Property | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33438
Articles are hosted by Taylor and Francis Online.
The tensile properties of solution-treated Incoloy alloy 800H, Hastelloy-X, Nimonic-86, and Inconel-617 have been determined in the temperature range 20 to I000°C. The strength parameters at temperatures above 700°C showed a strong dependence on the strain rate; at low strain rates the deformation was dominated by creep effects, the strain rate and maximum stress being related by the Norton creep equation. The tensile and impact properties of the alloys were also determined after exposure at 700 to 1000°C for up to 30 000 h. For Incoloy-800H, the results showed good retention of ductility and impact strength. The nickel-base alloys, in contrast, were found to have low room-temperature impact resistance after long time exposure at 700 to 900 °C, typical values being 10 to 20 J. cm−2. In impact tests at the exposure temperature, impact strengths were generally above 50 J.cm−2. At room temperature, allowances in design must be made for the low impact strength of the nickel-base alloys to ensure against brittle fracture. For example, excessive stresses during cooling of components following shutdown should be avoided.