ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Udo Bruch, Dieter Schuhmacher, Philip J. Ennis, Eberhard te Heesen
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 357-362
C.4. Short-Term Property | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33438
Articles are hosted by Taylor and Francis Online.
The tensile properties of solution-treated Incoloy alloy 800H, Hastelloy-X, Nimonic-86, and Inconel-617 have been determined in the temperature range 20 to I000°C. The strength parameters at temperatures above 700°C showed a strong dependence on the strain rate; at low strain rates the deformation was dominated by creep effects, the strain rate and maximum stress being related by the Norton creep equation. The tensile and impact properties of the alloys were also determined after exposure at 700 to 1000°C for up to 30 000 h. For Incoloy-800H, the results showed good retention of ductility and impact strength. The nickel-base alloys, in contrast, were found to have low room-temperature impact resistance after long time exposure at 700 to 900 °C, typical values being 10 to 20 J. cm−2. In impact tests at the exposure temperature, impact strengths were generally above 50 J.cm−2. At room temperature, allowances in design must be made for the low impact strength of the nickel-base alloys to ensure against brittle fracture. For example, excessive stresses during cooling of components following shutdown should be avoided.