ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Peter Soo, Robert L. Sabatini
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 324-346
C.3. Fatigue Property | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33436
Articles are hosted by Taylor and Francis Online.
A study has been carried out to evaluate the high-cycle fatigue strength of Incoloy alloy 800H in a high-temperature gas-cooled reactor helium environment containing significant quantities of moisture. As-heat-treated and thermally aged materials were tested to determine the effects of long-term oxidation in the helium test gas. Results from these tests were compared to those for a standard air environment. It was found that the mechanisms of fatigue failure were complex and involved recovery recrystallization of the surface-ground layer on the specimens, sensitization, work hardening, oxide scale integrity, and oxidation at the tips of propagating cracks. For certain situations, a corrosion-fatigue process seems to be important. However, for the helium environment studied, the fatigue strength was nearly always higher than that for air.