ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Hans-Peter Meurer, Gunter K. H. Gnirss, Wolfgang Mergler, Gerhard Raule, Hans Schuster, Georg Ullrich
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 315-323
C.3. Fatigue Property | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33435
Articles are hosted by Taylor and Francis Online.
For the development of a high-temperature gas-cooled reactor that is to be operated at temperatures up to 950°C, the low-cycle fatigue (LCF) as well as the high-cycle fatigue (HCF) behavior of several high-temperature alloys have been evaluated. The tests, performed between room temperature and 950°C, include the influence of the environment, hold times, and strain rate in the case of LCF behavior and of mean stresses in the case of HCF behavior. At high strain ranges, alloys with a high ductility like Incoloy-800H appear to be superior, whereas at low strain ranges and under HCF conditions, high-strength alloys like Inconel-617 and Nimonic-86 show a better fatigue resistance. Hold times decrease LCF resistance, especially at low strain ranges, which can be explained by the large stress relaxation. The better LCF resistance in impure helium compared to tests in air was correlated to differences in the deformation and crack initiation mechanisms. At high temperatures, strain rate plays an important role for the stress response under LCF loading. The HCF behavior was found to be very sensitive to superimposed mean stresses because of the considerable creep strain induced.