ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
F. Schubert, Udo Bruch, R. Cook, H. Diehl, Philip J. Ennis, W. Jakobeit, H. J. Penkalla, Eberhard te Heesen, G. Ullrich
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 227-240
C.2. Creep Property | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33426
Articles are hosted by Taylor and Francis Online.
Creep and stress rupture properties are determined for the candidate materials to be used in high-temperature gas-cooled reactor (HTGR) components. The materials and test methods are briefly described based on experimental results of test durations of ∼20 000 h. The medium creep strengths of the alloys lnconel-617, Hastelloy-X, Nimonic-86, Hastelloy-S, Manaurite-36X, IN-519, and Incoloy-800H are compared showing that lnconel-617 has the best creep rupture properties in the temperature range above 800 °C. The rupture time of welded joints is in the lower range of the scatterband of the parent metal. The properties determined in different simulated HTGR atmospheres are within the scatterband of the properties obtained in air. Extrapolation methods are discussed and a modified minimum commitment method is favored.