ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Greg J. Evans, Tutun Nugraha
Nuclear Technology | Volume 140 | Number 3 | December 2002 | Pages 315-327
Technical Paper | Radioisotopes | doi.org/10.13182/NT02-A3342
Articles are hosted by Taylor and Francis Online.
In this study, deposition of I2(g) on stainless steel tubing was investigated. The purpose was to quantify the rate of iodine deposition and desorption, as well as to elucidate the underlying mechanisms. The parameters included I2 gas phase concentration (10-7 to 10-11 M), relative humidity (<25 to 100%), tube surface temperature (23 to 90°C), and steel type (SS-304L and SS-316L). Gaseous I2 was found to deposit through both physical and chemical adsorption with deposition velocities ranging from 5 × 10-3 to 1.0 cm/s. At concentrations below 10-9 M, I2 rapidly deposited and was easily desorbed, consistent with physical adsorption. At concentrations above 10-9 M and low relative humidity (<25%), both adsorption and desorption were slow, consistent with a slow chemisorption process. At high relative humidity (>75%), rapid chemisorption with pitting corrosion occurred. Under some conditions, adsorption became inhibited resulting in an apparent maximum surface loading. At high iodine concentration, high relative humidity, and tube temperatures of 40 or 60°C, no such inhibition occurred, resulting in rapid and continuous iodine adsorption.