ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
George A. Jensen, A. M. Platt, George B. Mellinger, William J. Bjorklund
Nuclear Technology | Volume 65 | Number 2 | May 1984 | Pages 305-324
Technical Paper | Chemical Processing | doi.org/10.13182/NT84-A33413
Articles are hosted by Taylor and Francis Online.
Spent nuclear fuels contain significant quantities of three of the platinum-group metals—ruthenium, rhodium, and palladium—plus a related element, technetium, which is nearly absent in nature. Applications for the ruthenium, rhodium, and palladium are well established, and, since the supply of these and other noble metals is largely from foreign sources, they are considered strategic materials. Thus, there is considerable incentive to recover them from nuclear fuels. The technical feasibility of using fission product (FP) noble metals extensively in industry depends on resolution of three major problems: 1. They must be thoroughly decontaminated from all other radioactive materials in the waste stream. 2. They must be separated from one another in very high purity because of internal decay processes. 3. Applications selected must provide appropriate control of radioactivity or the radioisotopes must be removed by isotope-separation techniques or normal decay. Lead extraction as a method for recovering palladium, rhodium, and ruthenium from FP mixtures is examined. In this method, the mixture of FP oxides is combined with glass-forming chemicals, a metal oxide such as lead oxide (PbO) (called a scavenging agent), and a reducing agent such as charcoal. When this mixture is melted, a metal button is formed, which extracts the noble metals. The remainder of the melt cools to form a glass that may be suitable for nuclear waste storage. Lead oxide was found to be the most promising of the potential scavengers. It was reduced by all of the reducing agents tested, and higher density of lead may facilitate the separation of the metal from the glass. Use of PbO also appeared to have no detrimental effect on the glass quality. Charcoal was identified as the preferred reducing agent for technical and economic reasons. As long as a separable metal phase was formed in the melt, noble-metal recovery was not dependent on the amount of reducing agent and scavenger oxide (PbO, SrO, CuO, Bi2O3, Sb2O3) used in these experiments. Not all reducing agents studied (graphite, charcoal, silicon, flour, cornstarch, and sugar), however, were able to reduce all scavenger oxides to metal. Only graphite would reduce SnO and CuO and allow noble-metal recovery. The scavenger oxides Sb2O3, Bi2O3, and PbO, however, were reduced by all of the reducing agents tested. Similar noble-metal recovery was found with each. Although detailed evaluation of the waste-storage-related properties of the glass was beyond the scope of this work, the glass was briefly investigated. Glasses in which PbO was used as the scavenging agent were found to be homogeneous in appearance. In addition, the resistance to leaching of the glass tested was found to be close to that of certain waste glasses. Environmental risks from the lead in the waste glass were not evaluated.