ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Charles Hantouche
Nuclear Technology | Volume 65 | Number 3 | June 1984 | Pages 462-466
Technical Note | Fission Reactor | doi.org/10.13182/NT84-A33403
Articles are hosted by Taylor and Francis Online.
A comparison of local linear power densities measured with a gamma thermometer string (GTS) and with a fission chamber shows important discrepancies at the extremities of the assembly. The cause was revealed by a simulation of axial power distribution. These discrepancies appear to arise from inaccurate knowledge of the axial position of the GTS in the assembly. Using the method of fictitious displacement of a GTS, it was possible to reduce these discrepancies to <3.7%. One method of reducing this disadvantage could be to include the GTS in the fuel assemblies in the factory. By this way, it would be possible to eliminate passages for the string through the bottom of the core vessel.