ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Robert P. Schuman
Nuclear Technology | Volume 65 | Number 3 | June 1984 | Pages 422-431
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT84-A33398
Articles are hosted by Taylor and Francis Online.
Two leach-resistant waste forms, a borosilicate glass developed for the high-level waste calcines from reprocessed uranium fuels and iron-enriched basalt, a fused ceramic developed for americium plus plutonium wastes, have been leach tested. The specimens were leached in distilled deionized water and in a saturated salt brine at ∼30°C for 28, 63, and 126 days; one set was leached in a gamma field of ∼104 Gy/h (∼106 rad/h). The specimens were simulated high-level waste forms prepared from inactive ingredients and spiked with 22Na, 60Co, 95Zr-95Nb, 137Cs, 133Ba, 144Ce, and 241Am. The components were melted and heat treated, and specimens were sawed from the solidified material. The gamma field increased the leach rates in water (pH ∼3 after irradiation) typically by a factor of ∼10 and increased the leach rates in salt brine (pH decreased much less during irradiation) by a factor of ∼2. The leach rate of cobalt from glass was about seven times that from iron-enriched basalt. The leach rates usually decreased with increasing leach time. Both waste forms were still leach resistant in irradiated brine at 30°C, <2 µg/cm2·day, and fairly leach resistant in irradiated water at 30°C, <25 µg/cm2·day.