ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
C. D. Andriesse, R. H. J. Tanke
Nuclear Technology | Volume 65 | Number 3 | June 1984 | Pages 415-421
Technical Paper | Nuclear Safety | doi.org/10.13182/NT84-A33397
Articles are hosted by Taylor and Francis Online.
Existing data on the release of fission products (FPs) from UO2 above 1000°C show that the dominant transport process consists of elementary diffusion within grains. For many FPs, the noble gases among them forming an exception, this diffusion is characterized by an activation energy of ∼2.6 eV, which is close to the one for oxygen and very different from the one for uranium. Assuming that oxygen diffusion represents the diffusion of FPs, it can be predicted that diffusion is enhanced when there is excess oxygen in the lattice. An empirical relation between the pertinent activation energy and the overstoichiometry induced by uranium fission (burnup) is given. The transport by diffusion has to be driven by some gradient, and it is argued that the temperature gradient dominates over the concentration gradient. This argument leads to a complete description of the release rate in terms of the grain size, the central and surface temperatures, and the heat of transport. The heat of transport plays a crucial role as it varies greatly for the various FPs. Existing data allow estimation of values ranging from 0.1 eV for refractory products to more than 100 eV for volatile products. These variations appear to be correlated with variations in the bond strengths between FPs and oxygen, being the more reactive element in UO2. An empirical model of the dependence of the heat of transport on this bond strength is given, so that release rates for all the FPs can be derived from chemical tables. Finally, consistency of the measured release data with other independently obtained fuel parameters is proven.