ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
C. D. Andriesse, R. H. J. Tanke
Nuclear Technology | Volume 65 | Number 3 | June 1984 | Pages 415-421
Technical Paper | Nuclear Safety | doi.org/10.13182/NT84-A33397
Articles are hosted by Taylor and Francis Online.
Existing data on the release of fission products (FPs) from UO2 above 1000°C show that the dominant transport process consists of elementary diffusion within grains. For many FPs, the noble gases among them forming an exception, this diffusion is characterized by an activation energy of ∼2.6 eV, which is close to the one for oxygen and very different from the one for uranium. Assuming that oxygen diffusion represents the diffusion of FPs, it can be predicted that diffusion is enhanced when there is excess oxygen in the lattice. An empirical relation between the pertinent activation energy and the overstoichiometry induced by uranium fission (burnup) is given. The transport by diffusion has to be driven by some gradient, and it is argued that the temperature gradient dominates over the concentration gradient. This argument leads to a complete description of the release rate in terms of the grain size, the central and surface temperatures, and the heat of transport. The heat of transport plays a crucial role as it varies greatly for the various FPs. Existing data allow estimation of values ranging from 0.1 eV for refractory products to more than 100 eV for volatile products. These variations appear to be correlated with variations in the bond strengths between FPs and oxygen, being the more reactive element in UO2. An empirical model of the dependence of the heat of transport on this bond strength is given, so that release rates for all the FPs can be derived from chemical tables. Finally, consistency of the measured release data with other independently obtained fuel parameters is proven.