ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Robert A. FJeld, Thomas J. Overcamp
Nuclear Technology | Volume 65 | Number 3 | June 1984 | Pages 402-408
Technical Paper | Nuclear Safety | doi.org/10.13182/NT84-A33395
Articles are hosted by Taylor and Francis Online.
The effect of an electric field on the deposition of a confined aerosol in the presence of ionizing radiation is determined experimentally. A method to determine depositional rate coefficients from measurements of steady-state relative aerosol concentrations in a continuously reinforced chamber is used to obtain experimental data for monodisperse aerosols. Results were obtained for 0.1- and 0.5-µm-diam polystyrene aerosols in a 6000-cm3 container in which the average air absorbed dose rate is 0.22 Gy/h (22 rad/h). Data are obtained in the absence and in the presence of an externally applied electric field of 105 V/m. Significant reductions in aerosol concentration were observed in the chamber upon application of the electric field. In the absence of ionizing radiation, the depositional rate coefficient increases by a factor of 5 to 10. In the presence of ionizing radiation it increases by more than two orders of magnitude. Based on these results, it is concluded that electrical deposition may have potential use as the basis for a technique to reduce concentrations of nuclear aerosols.