ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Terry F. Rees, Jess M. Cleveland, Kenneth L. Nash
Nuclear Technology | Volume 65 | Number 1 | April 1984 | Pages 131-137
Technical Paper | Postaccident Debris Cooling / Radioactive Waste Management | doi.org/10.13182/NT84-A33380
Articles are hosted by Taylor and Francis Online.
The speciation of plutonium, neptunium, and americium was determined in groundwaters from four sources in the Basin and Range Province: the lower carbonate aquifer, Nevada Test Site (NTS) (Crystal Pool); alluvial fill, Frenchman Flat, NTS (well 5C); Hualapai Valley, Arizona (Red Lake south well); and Tularosa Basin, New Mexico (Rentfrow well). Plutonium generally was most soluble in Rentfrow and well 5C waters and was present primarily in the higher oxidation states in these waters. Solubility was lowest in Crystal Pool water, apparently because this water was capable of reducing plutonium to relatively insoluble Pu(IV). In general, plutonium was comparatively insoluble in Red Lake south well water, but results were somewhat more variable. The behavior of neptunium paralleled that of plutonium, although the influence of oxidation-reduction properties of the groundwaters appeared to be less pronounced. The americium results were different from those of plutonium and neptunium, as would be expected from its existence in these waters solely as the trivalent ion. In general, it was relatively soluble in all waters at 25 °C, and relatively insoluble at 90°C. The results were interpreted to indicate that plutonium and, to a lesser extent, neptunium are least soluble in reducing groundwaters containing a large concentration of sulfate ion and a small concentration of strongly complexing anions. The results further emphasize the desirability of including studies such as this among the other site-selection criteria for nuclear waste repositories.