ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Kozo Gonda, Koichiro Oka, Keiichi Hayashi
Nuclear Technology | Volume 65 | Number 1 | April 1984 | Pages 102-108
Technical Paper | Postaccident Debris Cooling / Fuel Cycle | doi.org/10.13182/NT84-A33377
Articles are hosted by Taylor and Francis Online.
The amount and behavior of fine suspended particles and sediments in headend process vessels were investigated. Powdery fines of Zircaloy cladding, crud, and nonsoluble fission product (FP) residues were determined to be 5.3, 1.8, and 1.0 kg/ton of spent fuel reprocessed, respectively. The 1.0 kg/ton of nonsoluble FP residues and 1.8 kg/ton of crud were reasonable amounts when compared with those estimated from burnup and amount of spent fuels treated. The 5.3 kg/ton spent fuel reprocessing came from powdery fines of Zircaloy cladding that had been confirmed by chop of unirradiated Zircaloy clad tube. These residues were mostly suspended in a process solution. Particle size of sediments and suspended particles distributed mostly in <0.5-mm size. Most of the particles that arose in the dissolver scarcely settled down and passed through headend process vessels into the high-active liquid waste storage vessel, while some of the particles settled down in succession in process vessels. Uranium and plutonium dissolved well, so that they left little nonsoluble residue. The weight fraction ratio of nonsoluble plutonium to uranium was 0.05% in sediments, which was higher than the value of 0.02% in hulls. It was concluded that uranium continues to dissolve even after settling down into sediments of the dissolver.